E_{8} lattice with icosians and Z_{5} symmetry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 224125
(http://iopscience.iop.org/0305-4470/22/19/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 12:36

Please note that terms and conditions apply.

\mathbf{E}_{8} lattice with icosians and \mathbf{Z}_{5} symmetry

Mehmet Koca \dagger
Institut des Hautes Etudes Scientifiques, 35 Route de Chartres, 91440 Bures-sur-Yvette, France

Received 3 February 1989

Abstract

A simple method for the construction of the E_{8} root system with icosians is suggested. It is confronted with the root system of E_{8} obtained by integral octonions. Embeddings of the maximal subgroups $\mathrm{SU}(5) \times \mathrm{SU}(5)$ and $\mathrm{SU}(3) \times \mathrm{E}_{6}$ in E_{8} with respective five-fold and three-fold symmetries are discussed.

1. Introduction

Most general string theories can be obtained using self-dual lattices where the compactified degrees of freedom are described by simple conformal field theories [1]. Among these theories the heterotic string [2] constructed in ten-dimensional spacetime displays most attractive features with a possibility of obtaining the standard model with orbifold compactification [3]. With regard to these facts the root system of E_{8} plays an essential role. In a recent paper [4] we have constructed the root system of E_{8} with integral octonions [5] and investigated its algebraic structure. The method which we have employed is based on the idea that the octonions are obtained by pairing two quaternion \bar{s}. For this purpose we first obtained the root system of F_{4} and then combined two such systems to construct the octonionic description of the E_{8} lattice, where one set of F_{4} roots is multiplied by an imaginary unit e_{7} and added to the other.

In this paper we construct the E_{8} lattice with icosians. Icosian is a generic name for the 120 quaternionic elements (q) of the binary icosahedral group [6] which we will discuss in §2. We follow the same method as [4], i.e. we combine two sets of quaternionic roots of F_{4}, multiplying one set by $\sigma=\frac{1}{2}(1-\sqrt{5})$ and add it to the other set, which leads to 240 non-zero roots $q, \sigma q$ of E_{8}. We compare the E_{8} roots of icosians with those of octonions and find the relations between them. In § 3 we decompose the roots of E_{8} with respect to one of its maximal subgroups $\mathrm{SU}(5) \times \mathrm{SU}(5)^{\prime}$ where a five-fold symmetry of icosians plays a dominant role. In § 4 we concentrate on the three-fold symmetry of icosians by branching E_{8} with respect to its maximal subgroup $\operatorname{SU}(3) \times E_{6}$. Section 5 consists of the discussions and suggestions as to how this method can be generalised for the construction of the $E_{8} \times E_{8}^{\prime}$ lattice with the inclusion of octonions and the Leech lattice [7]. A preliminary version of this work has been published [8].

[^0]
2. Icosians as roots of \mathbf{E}_{8}

A discrete subgroup of $\mathrm{SO}(3)$ of order 60 is called the icosahedral group, which is the symmetry group of the icosahedron. It is isomorphic to the group of even permutations A_{5} of five letters. Its double cover $2 \mathrm{~A}_{5}$ of 120 elements, called the binary icosahedral group, can be represented by quaternions or equivalently 2×2 unitary matrices of determinant one. The 120 elements of the binary icosahedral group can be generated by the elements [6]

$$
\begin{equation*}
A=\frac{1}{2}\left(\tau-\sigma e_{1}+e_{3}\right) \quad B=\frac{1}{2}\left(1-\sigma e_{2}+\tau e_{3}\right) \tag{1}
\end{equation*}
$$

satisfying the relations

$$
\begin{equation*}
A^{5}=B^{3}=C^{2}=A B C=-1 \tag{2}
\end{equation*}
$$

with $C=e_{3}$. Here τ and σ are defined by

$$
\begin{array}{lll}
\tau=\frac{1}{2}(1+\sqrt{5}) & \sigma=\frac{1}{2}(1-\sqrt{5}) \tag{3}\\
\tau+\sigma=1 & \tau^{2}=\tau+1 & \sigma^{2}=\sigma+1 . \\
\tau \sigma=-1
\end{array}
$$

and e_{1}, e_{2} and e_{3} are the quaternionic imaginary units satisfying

$$
\begin{equation*}
e_{i} e_{j}=-\delta_{i j}+\varepsilon_{i j k} e_{k} \quad \bar{e}_{i}=-e_{i} \quad i, j, k=1,2,3 \tag{4}
\end{equation*}
$$

where $\delta_{i j}$ and $\varepsilon_{i j k}$ are the usual Kronecker and Levi-Civita symbols respectively. In mathematical literature a short notation $\langle p, q, r\rangle$ is used to denote the groups generated by

$$
\begin{equation*}
A^{p}=B^{q}=C^{r}=A B C=-1 \tag{5}
\end{equation*}
$$

Groups generated by quaternions fall into four classes called the quaternion group $\langle 2,2,2\rangle$ of order 8 , the binary tetrahedral group $\langle 3,3,2\rangle$ of order 24 , the binary octahedral group $\langle 4,3,2\rangle$ of order 48 and finally the binary icosahedral group $\langle 5,3,2\rangle$ of order 120. In [4] we have shown the relations of $\langle 3,3,2\rangle$ and $\langle 4,3,2\rangle$ with the quaternionic root systems of $\mathrm{SO}(8)$ and F_{4} respectively. An explicit form for the elements of $\langle 5,3,2\rangle$ can be calculated using (1) and is written as follows:
$\pm 1 \quad \pm e_{1} \quad \pm e_{2} \quad \pm e_{3} \quad \frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{2} \pm e_{3}\right)$
$\frac{1}{2}\left(\pm \tau \pm e_{1} \pm \sigma e_{2}\right) \quad \frac{1}{2}\left(\pm 1 \pm \tau e_{1} \pm \sigma e_{3}\right) \quad \frac{1}{2}\left(\pm \sigma \pm \tau e_{2} \pm e_{3}\right) \quad \frac{1}{2}\left(\pm \sigma e_{1} \pm e_{2} \pm \tau e_{3}\right)$
$\frac{1}{2}\left(\pm \tau \pm e_{2} \pm \sigma e_{3}\right) \quad \frac{1}{2}\left(\pm 1 \pm \sigma e_{1} \pm \tau e_{2}\right) \quad \frac{1}{2}\left(\pm \sigma \pm e_{1} \pm \tau e_{3}\right) \quad \frac{1}{2}\left(\pm \tau e_{1} \pm \sigma e_{2} \pm e_{3}\right)$
$\frac{1}{2}\left(\pm \tau \pm \sigma e_{1} \pm e_{3}\right) \quad \frac{1}{2}\left(\pm 1 \pm \sigma e_{2} \pm \tau e_{3}\right) \quad \frac{1}{2}\left(\pm \sigma \pm \tau e_{1} \pm e_{2}\right) \quad \frac{1}{2}\left(\pm e_{1} \pm \tau e_{2} \pm \sigma e_{3}\right)$.
The 24 integral quaternions in ($6 a$) (Hurwitz integers) [9] are the elements of $\langle 3,3,2\rangle$, a subgroup of $\langle 5,3,2\rangle .\langle 4,3,2\rangle$ is not a subgroup of $\langle 5,3,2\rangle$. Notice that ($6 c$) and ($6 d$) follow from ($6 b$) by a cyclic permutation of e_{1}, e_{2} and e_{3}. If we denote by q any element of $\langle 5,3,2\rangle$ then there are 30 elements satisfying $q^{2}=-1,40$ elements with $q^{3}= \pm 1$ (half with $q^{3}=+1$) and 48 elements with $q^{5}= \pm 1$ (half with $q^{5}=+1$). As we shall discuss in $\S \S 3$ and 4 , these features of icosians are appropriate for the decompositions of E_{8} with respect to its maximal subgroups $S U(3) \times E_{6}$ and $S U(5) \times S U(5)^{\prime}$.

Wilson [10], as well as Conway and Sloane [11] have proposed that the E_{8} lattice can be described by 120 icosians q and their multiples with $\sigma, \sigma q$. To ensure the 'correct angles' between the E_{8} roots, they suggested a 'reduced' scalar product. Let p and q be two quaternions. The usual scalar product is defined by

$$
\begin{equation*}
(p, q)=\frac{1}{2}(\tilde{p} q+\bar{q} p) \tag{7}
\end{equation*}
$$

With this definition, the scalar products of icosians (6a)-(6d) will take the values $a+b \sigma$, where a and b are $0, \pm \frac{1}{2}, \pm 1$. The 'reduced' scalar product is defined by the mapping $a+b \sigma \rightarrow a$. This new definition of the scalar product also leads to a construction of the Leech lattice in terms of icosians [12]. Therefore, multiplying the elements in ($6 a$) - $6 d$) by σ will help us to write the complete root system of E_{8} explicitly. However, in this section, without referring to the defining relation of (2) we give an alternative construction of the roots of E_{8} with icosians. We follow a method similar to that suggested in [4]. We notice that the 'reduced' scalar product allows us to treat $\sigma, \sigma e_{1}, \sigma e_{2}, \sigma e_{3}$ as new orthogonal units, independent of the quaternionic units $1, e_{1}$, e_{2} and e_{3}. Thus, by this trick, we enlarge the four-dimensional Euclidean space of quaternions to eight-dimensional Euclidean space, a necessary step towards the construction of the E_{8} lattice. This procedure immediately suggests that there must exist a natural correspondence between $\sigma, \sigma e_{1}, \sigma e_{2}, \sigma e_{3}$ and the octonionic units e_{4}, e_{5}, e_{6} and e_{7}. This point will be clarified in what follows.

We briefly recall the octonionic construction of E_{8} in [4]. The root system of the exceptional group F_{4} can be written in terms of quaternions as follows

A_{0}	A_{1}	A_{2}	
$24: \pm 1, \pm e_{1}, \pm e_{2}, \pm e_{3}$ $\frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{2} \pm e_{3}\right)$		$8_{\mathrm{v}}: \frac{1}{2}\left(\pm 1 \pm e_{1}\right)$ $\frac{1}{2}\left(\pm e_{2} \pm e_{3}\right)$	$8_{\mathrm{c}}: \frac{1}{2}\left(\pm 1 \pm e_{2}\right)$ $\frac{1}{2}\left(\pm e_{3} \pm e_{1}\right)$

Here, provided they are multiplied by $\sqrt{2}, A_{0}$ represents the long roots of F_{4} (the root system of $\mathrm{SO}(8)$) and A_{1}, A_{2} and A_{3} constitute the short roots of F_{4}. By pairing two sets of (8) in a delicate manner we obtain the octonionic representation of E_{8} roots:

$$
\begin{align*}
& {\left[A_{0}, 0\right]=A_{0} \quad\left[0, A_{0}\right]=e_{7} A_{0} \quad\left[A_{1}, A_{1}\right]=A_{1}+e_{7} A_{1}} \tag{9}\\
& {\left[A_{2}, A_{3}\right]=A_{2}+e_{7} A_{3} \quad\left[A_{3}, A_{2}\right]=A_{3}+e_{7} A_{2}}
\end{align*}
$$

where we introduce the octonionic units $e_{7}^{2}=-1, \bar{e}_{7}=-e_{7}, e_{4}=e_{7} e_{1}, e_{5}=e_{7} e_{2}$ and $e_{6}=e_{7} e_{3}$. In fact, this is an explicit realisation of the E_{8} lattice with octonions by pairing two F_{4} lattices suggested by Goddard et al [13] where E_{8} sits at one corner of a magic square. A little effort shows that E_{8} can also be constructed by pairing two F_{4} roots similarly to (9) but with slightly different partners and replacing e_{7} by σ. Indeed, one can easily check that the following pairings:

$$
\begin{align*}
& \left(A_{0}, 0\right)=A_{0} \quad\left(0, A_{0}\right)=\sigma A_{0} \quad\left(A_{1}, A_{2}\right)=A_{1}+\sigma A_{2} \tag{10}\\
& \left(A_{2}, A_{3}\right)=A_{2}+\sigma A_{3} \quad\left(A_{3}, A_{1}\right)=A_{3}+\sigma A_{1}
\end{align*}
$$

not only reproduce the 120 elements in $(6 a)-(6 d)$, denoted by q, but also yield the additional roots σq of E_{8}. The differences between two pairings can be contrasted by comparing (9) and (10). This comparison suggests that a correspondence between the octonionic roots and the icosians can be obtained in the following form

$$
\begin{array}{rlrl}
e_{7} A_{0} \leftrightarrow \sigma A_{0} & & e_{7} \leftrightarrow \sigma \\
e_{7} A_{1} \leftrightarrow \sigma A_{2} & & \tag{11}\\
e_{7} A_{2} \leftrightarrow \sigma A_{1} \\
e_{7} A_{3} \leftrightarrow \sigma A_{3} & \rightarrow & e_{7} e_{1}=e_{4} \leftrightarrow \sigma e_{2} \\
e_{7} e_{2}=e_{5} \leftrightarrow \sigma e_{1} \\
e_{7} e_{3}=e_{6} \leftrightarrow \sigma e_{3} .
\end{array}
$$

With the obvious mapping $1 \leftrightarrow 1, e_{1} \leftrightarrow e_{1}, e_{2} \leftrightarrow e_{2}, e_{3} \leftrightarrow e_{3}$, one can easily transform one system of roots of E_{8} into another. This transformation can also be used for the
octonionic construction of the Leech lattice, which has been already described by icosians [10-12].

Before we end this section, let us remark on the following facts. There exists an alternative representation of the E_{8} lattice with icosians. Instead of starting with the pair $\left(A_{1}, A_{2}\right)$ in (10), had we started with $\left(A_{1}, A_{3}\right)$ we would have obtained the following set of icosians:

$$
\begin{align*}
& \left(A_{0}, 0\right)=A_{0} \quad\left(0, A_{0}\right)=\sigma A_{0} \quad\left(A_{1}, A_{3}\right)=A_{1}+\sigma A_{3} \\
& \left(A_{3}, A_{2}\right)=A_{3}+\sigma A_{2} \quad\left(A_{2}, A_{1}\right)=A_{2}+\sigma A_{1} . \tag{12}
\end{align*}
$$

The 120 -element subset in (12), which constitutes the binary icosahedral group, is completely independent of ($6 a$)-($6 d$) and can be generated by $A=\frac{1}{2}\left(\tau+\sigma e_{2}+e_{3}\right)$ and $B=\frac{1}{2}\left(1-\sigma e_{1}+\tau e_{3}\right)$. Equation (12) is obtained from (10) by a redefinition of the quaternionic units $e_{1} \rightarrow-e_{2}, e_{2} \rightarrow e_{1}, e_{3} \rightarrow e_{3}$ corresponding to a rotation of $\pi / 2$ around the e_{3} axis in the clockwise direction, which can be obtained by the action of an element of the octahedral group. Since the octohedral or binary octohedral group is not a subgroup of $\langle 5,3,2\rangle$ the new set of icosians are expected to be different from the former. The elements of the binary icosahedral group used in most of the mathematical literature are those which can be obtained from (12). If one compares (12) and (9), the correspondence in this case between octonions and icosians can be obtained from the mapping
$\sigma \leftrightarrow e_{7} \quad \sigma e_{1} \leftrightarrow e_{6}=e_{7} e_{3} \quad \sigma e_{2} \leftrightarrow e_{5}=e_{7} e_{2} \quad \sigma e_{3} \leftrightarrow e_{4}=e_{7} e_{1}$.
In the appendix to [4] we have given seven different constructions of the E_{8} lattice with octonions similar to (9). Indeed, with the quaternionic units e_{1}, e_{2} and e_{3} one can also construct the following two independent octonionic root systems of E_{8} :

$$
\begin{align*}
& {\left[A_{0}, 0\right]=A_{0} \quad\left[0, A_{0}\right]=e_{7} A_{0} \quad\left[A_{2}, A_{2}\right]=A_{2}+e_{7} A_{2}} \tag{14}\\
& {\left[A_{3}, A_{1}\right]=A_{3}+e_{7} A_{1} \quad\left[A_{1}, A_{3}\right]=A_{1}+e_{7} A_{3}}
\end{align*}
$$

and

$$
\begin{align*}
& {\left[A_{0}, 0\right]=A_{0} \quad\left[0, A_{0}\right]=e_{7} A_{0} \quad\left[A_{3}, A_{3}\right]=A_{3}+e_{7} A_{3}} \\
& {\left[A_{1}, A_{2}\right]=A_{1}+e_{7} A_{2} \quad\left[A_{2}, A_{1}\right]=A_{2}+e_{7} A_{1} .} \tag{15}
\end{align*}
$$

Relations among these octonionic constructions and those in (10) and (12) can be found in a similar manner which we have illustrated. Although we shall say more in concluding remarks as regards the algebraic aspects of the E_{8} roots with octonions contrasted with icosians, some of their properties should be mentioned here since we will use them in later sections. Let P represent an octonionic root of E_{8}. They satisfy either conditions $q^{3}= \pm 1, q^{2}= \pm 1$. This feature of the octonionic roots can be used for the constructions of orbifolds with $\mathrm{Z}_{6}, \mathrm{Z}_{4}, \mathrm{Z}_{3}$ and Z_{2} symmetries embeddable in E_{8} [14]. In the case of icosianic roots we also have the roots satisfying $q^{5}= \pm 1$ in addition to the former ones, so that it allows constructions of orbifolds with Z_{10} and Z_{5} symmetries.

3. Embedding of $\operatorname{SU}(5) \times \operatorname{SU}(5)^{\prime}$ in \mathbf{E}_{8} with \mathbf{Z}_{5} symmetry

Hereafter we will deal with the icosian description of the E_{8} lattice given by (10). Any element q in $(6 b)-(6 d)$ which has the scalar part $-\frac{1}{2} \tau$ or $-\frac{1}{2} \sigma$ has the property $q^{5}=1$.

Therefore 24 elements with this property can be classified into six groups. This classification can be done at will depending on the choices of six elements; to begin with let us choose a root $R_{1}=\frac{1}{2}\left(-\tau+e_{1}+\sigma e_{2}\right)$. A simple calculation shows that its powers are given by

$$
\begin{array}{ll}
R_{1}=\frac{1}{2}\left(-\tau+e_{1}+\sigma e_{2}\right) \quad & R_{1}^{2}=\frac{1}{2}\left(-\sigma-\tau e_{1}+e_{2}\right) \\
R_{1}^{3}=\bar{R}_{1}^{2}=\frac{1}{2}\left(-\sigma+\tau e_{1}-e_{2}\right) \quad & R_{1}^{4}=\bar{R}_{1}=\frac{1}{2}\left(-\tau-e_{1}-\sigma e_{2}\right) \tag{16}\\
R_{1}^{5}=1 & R_{1}+R_{1}^{2}+R_{1}^{3}+R_{1}^{4}+R_{1}^{5}=0 .
\end{array}
$$

One can immediately check that with the use of the 'reduced' scalar product these roots can be used for the description of an extended Coxeter-Dynkin diagram of $\operatorname{SU}(5)$ (figure 1). The 20 non-zero roots of $\mathrm{SU}(5)$ are then given by

$$
\begin{align*}
& \pm R_{1}, \quad \pm R_{1}^{2}, \quad \pm R_{1}^{3}, \quad \pm R_{1}^{4}, \quad \pm R_{1}^{5}= \pm 1 \tag{17}\\
& \pm \sigma R_{1}, \quad \pm \sigma R_{1}^{2}, \quad \pm \sigma R_{1}^{3}, \quad \pm \sigma R_{1}^{4}, \quad \pm \sigma R_{1}^{5}= \pm \sigma .
\end{align*}
$$

It is clear that this set of $\mathrm{SU}(5)$ roots is left invariant under a repeated left or right multiplication of R_{1}, leading to a Z_{5} symmetry. An orthogonal set of roots to the roots in (17) can be generated by repeated application of R_{1} on the roots $\pm e_{3}$ and $\pm \sigma e_{3}$. Thus we obtain the roots of another $\mathrm{SU}(5)^{\prime}$, orthogonal to $\mathrm{SU}(5)$, given by

$$
\begin{align*}
& \pm R_{1} e_{3}, \quad \pm R_{1}^{2} e_{3}, \quad \pm R_{1}^{3} e_{3}, \quad \pm R_{1}^{4} e_{3}, \quad \pm e_{3}, \\
& \pm \sigma R_{1} e_{3}, \quad \pm \sigma R_{1}^{2} e_{3}, \quad \pm \sigma R_{1}^{3} e_{3}, \quad \pm \sigma R_{1}^{4} e_{3}, \quad \pm \sigma e_{3} . \tag{18}
\end{align*}
$$

Hence (17) and (18) display the roots of the maximal subgroup $\mathrm{SU}(5) \times \mathrm{SU}(5)^{\prime}$ of E_{8} with an obvious Z_{5} symmetry. The remaining roots belong to the coset space $\mathrm{E}_{8} / \mathrm{SU}(5) \times$ $\operatorname{SU}(5)^{\prime}$, which transform as $\left(\underline{5}, \underline{10^{*}}\right)+\left(\underline{5}^{*}, \underline{10}\right)$ and $(\underline{10}, \underline{5})+\left(\underline{10}, \underline{5}^{*}\right)$. The 200 roots of the coset space can be written in a compact form by defining
$A_{1}=\frac{1}{2}\left(-1-e_{1}-e_{2}+e_{3}\right) \quad A_{2}=\frac{1}{2}\left(-\sigma-\tau e_{2}+e_{3}\right) \quad A_{3}=\frac{1}{2}\left(-\tau e_{1}+\sigma e_{2}+e_{3}\right)$
$A_{4}=\frac{1}{2}\left(\sigma-\tau e_{2}+e_{3}\right)=-\bar{A}_{2} \quad A_{5}=\frac{1}{2}\left(1-e_{1}-e_{2}+e_{3}\right)=-\bar{A}_{1}$
$B_{1}=\frac{1}{2}\left(\tau-e_{2}+\sigma e_{3}\right) \quad B_{2}=\frac{1}{2}\left(-1-\tau e_{1}+\sigma e_{3}\right) \quad B_{3}=\frac{1}{2}\left(e_{1}-\tau e_{2}+\sigma e_{3}\right)$
$B_{4}=\frac{1}{2}\left(1-\tau e_{1}+\sigma e_{3}\right)=-\bar{B}_{2} \quad B_{5}=\frac{1}{2}\left(-\tau-e_{2}+\sigma e_{3}\right)=-\bar{B}_{1}$.
It can be shown that the roots of the representation ($5,10^{*}$) are given by the elements

$$
\begin{equation*}
R_{1}^{n} A_{m}, \quad \sigma R_{1}^{n} B_{m} \quad n, m=1,2,3,4,5 . \tag{20}
\end{equation*}
$$

Figure 1. Extended Coxeter-Dynkin diagram of $\operatorname{SU}(5)$ with five-fold symmetry of icosian $R_{1}=\frac{1}{2}\left(-\tau+e_{1}+\sigma e_{2}\right)$.

Negatives of these roots constitute the conjugate representation (5*, 10). Similarly the roots belonging to ($10, \underline{5}$) can be written as

$$
\begin{equation*}
R_{1}^{n} B_{m}, \quad-\sigma R_{1}^{n} A_{m} \quad n, m=1,2,3,4,5 \tag{21}
\end{equation*}
$$

the negatives of which represent the roots in ($1 \underline{0}^{*}, \underline{5}^{*}$). It is obvious from (20) and (21) that the roots belonging to the representations $\left(\underline{5}, \underline{0^{*}}\right),(\underline{10}, \underline{5})$ and their conjugates preserve Z_{5} symmetry separately.

It is perhaps more convenient to express the roots of the coset space as products of R_{1}^{n} with the elements of the binary tetrahedral group which can be defined by

$$
\begin{array}{ll}
S_{0}=\frac{1}{2}\left(1+e_{1}+e_{2}+e_{3}\right) & S_{1}=\frac{1}{2}\left(1+e_{1}-e_{2}-e_{3}\right) \tag{22}\\
S_{2}=\frac{1}{2}\left(1-e_{1}+e_{2}-e_{3}\right) & S_{3}=\frac{1}{2}\left(1-e_{1}-e_{2}+e_{3}\right)
\end{array}
$$

with their conjugates and negatives. Then all the roots of E_{8} can be decomposed as follows:
$(20,1): \pm R_{1}^{n}, \quad \pm \sigma R_{1}^{n} \quad(1,20): \pm R_{1}^{n} e_{3}, \quad \pm \sigma R_{1}^{n} e_{3}$
$\left(\underline{5}, \underline{0^{*}}\right)+\left(\underline{5}^{*}, \underline{10}\right)+(\underline{10}, \underline{5})+\left(\underline{10} \underline{ }^{*}, \underline{5}^{*}\right): \pm R_{1}^{n}\left(S_{\alpha}, \bar{S}_{\beta}, e_{1}, e_{2}\right), \quad \pm \sigma R_{1}^{n}\left(S_{\alpha}, \bar{S}_{\beta}, e_{1}, e_{2}\right)$
$n=1,2,3,4,5 \quad \alpha, \beta=0,1,2,3$.
As we stated at the beginning of this section, R_{1} can be chosen six different ways:

$$
\begin{array}{lll}
R_{1}=\frac{1}{2}\left(-\tau+e_{1}+\sigma e_{2}\right) & R_{2}=\frac{1}{2}\left(-\tau+e_{2}+\sigma e_{3}\right) & R_{3}=\frac{1}{2}\left(-\tau+\sigma e_{1}+e_{3}\right) \\
R_{4}=\frac{1}{2}\left(-\tau+e_{1}-\sigma e_{2}\right) & R_{5}=\frac{1}{2}\left(-\tau+e_{2}-\sigma e_{3}\right) & R_{6}=\frac{1}{2}\left(-\tau-\sigma e_{1}+e_{3}\right) . \tag{24b}
\end{array}
$$

These choices are made so that the triples (R_{1}, R_{2}, R_{3}) and (R_{4}, R_{5}, R_{6}) have cyclic symmetries in e_{1}, e_{2} and e_{3}. It is clear from these discussions that $\mathrm{SU}(5) \times \mathrm{SU}(5)^{\prime}$ can be embedded in E_{8} in six different ways; in each case a Z_{5} symmetry is manifest. These six possible decompositions of E_{8} with respect to $\mathrm{SU}(5) \times \mathrm{SU}(5)^{\prime}$ can be displayed as follows:
$\pm R_{a}^{n}, \pm \sigma R_{a}^{n} \quad \pm R_{a}^{n} e_{3}, \pm \sigma R_{a}^{n} e_{3}$

$$
\begin{align*}
& \left(\underline{5}, \underline{10^{*}}\right)+\left(\underline{5}^{*}, \underline{10}\right)+(\underline{10}, \underline{5})+\left(\underline{10}^{*}, \underline{5}^{*}\right) \tag{20,1}\\
& \left(\pm R_{a}^{n}, \pm \sigma R_{a}^{n}\right)\left(S_{\alpha}, \bar{S}_{\beta}, e_{1}, e_{2}\right) \tag{25a}\\
& \left(\pm R_{b}^{n}, \pm \sigma R_{b}^{n}\right)\left(S_{\alpha}, \bar{S}_{\beta}, e_{2}, e_{3}\right) \tag{25b}
\end{align*}
$$

$$
\pm R_{b}^{n}, \pm \sigma R_{b}^{n} \quad \pm R_{b}^{n} e_{1}, \pm \sigma R_{b}^{n} e_{1}
$$

$$
\begin{equation*}
\pm R_{c}^{n}, \pm \sigma R_{c}^{n} \quad \pm R_{c}^{n} e_{2}, \pm \sigma R_{c}^{n} e_{2} \quad\left(\pm R_{c}^{n}, \pm \sigma R_{c}^{n}\right)\left(S_{\alpha}, \bar{S}_{\beta}, e_{3}, e_{1}\right) \tag{25c}
\end{equation*}
$$

where $n=1,2,3,4,5, a=1,4, b=2,5, c=3,6$ and $\alpha, \beta=0,1,3$
So far we have discussed the action of an element of the binary icosahedral group on its elements by left or right multiplication. We can also consider a transformation of an element where a left and right multiplication are combined. Let P and Q be elements of $\langle 5,3,2\rangle$. Then a transformation of the form

$$
\begin{equation*}
Q^{\prime}=(\pm P) Q(\pm \bar{P}) \tag{26}
\end{equation*}
$$

represents the action of an element of the icosahedral group on the elements of $\langle 5,3,2\rangle$. It is also possible to generate a Z_{5} symmetry in this form. For an illustration of this point let us choose $P=R_{1}=\frac{1}{2}\left(-\tau+e_{1}+\sigma e_{2}\right)$. With this choice of P each $\operatorname{SU}(5)$ root remains invariant without being affected at all by the group operation. However, the

Figure 2. Extended Coxeter-Dynkin diagram of E_{8} leading to an $\mathrm{SU}(5) \times \operatorname{SU}(5)^{\prime}$ embedding with Z_{5} symmetry.
same action (26) on the roots of $\mathrm{SU}(5)^{\prime}$ manifests itself as a Z_{s} symmetry. An extended Coxeter-Dynkin diagram of E_{8}, where the Z_{5} symmetries so far discussed are apparent, is given in figure 2 . An $\mathrm{SU}(5)$ orbifold with Z_{5} symmetry can be used for the construction of six-dimensional string theories [15].

4. Embedding of $\operatorname{SU}(3) \times E_{6}$ in E_{8} with Z_{3} symmetry

In this section we decompose E_{8} roots under its maximal subgroup $\mathrm{SU}(3) \times \mathrm{E}_{6}$, which plays an important role in orbifold compactification of the heterotic string. We will choose the simple roots of E_{8} in such a way that the extended Coxeter-Dynkin diagram of E_{6} obtained from that of E_{8} will have a three-fold symmetry of icosians. Such an extended Coxeter-Dynkin diagram of E_{6} is given in figure 3. Here Z_{3} symmetry is defined in the form of the transformation (26) where P is replaced by $S_{0}=$ $\frac{1}{2}\left(1+e_{1}+e_{2}+e_{3}\right)$, which satisfies $S_{0}^{2}=-\bar{S}_{0}, S_{0}^{3}=-1, S_{0}+\bar{S}_{0}=1$. It is easy to show that an action of S_{0} in the form of (26) rotates e_{1}, e_{2}, e_{3} and $\sigma e_{1}, \sigma e_{2}, \sigma e_{3}$ in cyclic order. We choose the simple roots of E_{8} in such a way that the roots of E_{6} include the elements of the binary tetrahedral group. $\mathrm{SU}(3)$ roots orthogonal to those of E_{6} in figure 3 are given by $\pm \sigma, \pm \sigma S_{0}, \pm \sigma \bar{S}_{0}$. Each of these roots is invariant under the action of S_{0} in the form of (26). It is clear from figure 3 that S_{0} rotates B_{1}, B_{2} and B_{3} in cyclic order just like it does e_{1}, e_{2} and e_{3}. Thus, Z_{3} symmetry of the extended Coxeter-Dynkin diagram of E_{6} is obtained by repeated application of the element S_{0} of the E_{8} root

Figure 3. Extended Coxeter-Dynkin diagram of E_{6} with icosians $B_{1}=\frac{1}{2}\left(-1-\tau e_{1}-\sigma e_{3}\right)$, $B_{2}=\frac{1}{2}\left(-1-\tau e_{2}-\sigma e_{1}\right), B_{3}=\frac{1}{2}\left(-1-\tau e_{3}-\sigma e_{2}\right), B_{0}=\bar{S}=\left(1-e_{1}-e_{2}-e_{3}\right), e_{1}, e_{2}$ and e_{3}.
system. The 72 non-zero roots of E_{6} can be grouped as 24 triples, each of which is rotated by the action of S_{0}. We do not give the details here, but it can be easily shown that while 48 of the roots of E_{6} come from the elements of the binary icosahedral group, the remaining roots are the σ multiples of the elements of the icosahedral group lying in the coset space $\mathrm{E}_{8} / \mathrm{SU}(3) \times \mathrm{E}_{6}$.

An interesting algebraic property of the roots B_{1}, B_{2} and B_{3} is the relations [14]:

$$
\begin{align*}
& {\left[B_{i}, B_{j}\right]=-B_{0}-\varepsilon_{i j k} B_{k} \quad B_{i} B_{j} B_{k}=B_{i} S_{0}} \tag{27}\\
& B_{0}=\bar{S}_{0} \quad i \neq j \neq k=1,2,3 .
\end{align*}
$$

Similar relations can be obtained for the roots cyclically rotated to each other. Let Q_{1}, Q_{2} and Q_{3} be such roots of E_{6} belonging to $\langle 5,3,2\rangle$. Then we can show that their triple products can be classified as

$$
Q_{1} Q_{2} Q_{3}= \begin{cases}Q_{1} S_{0} & \text { for }\left(Q_{1}, \bar{S}_{0}\right)=0 \tag{28}\\ 1 & \text { for }\left(Q_{1}, \bar{S}_{0}\right)=\frac{1}{2} \\ -1 & \text { for }\left(Q_{1}, \bar{S}_{0}\right)=-\frac{1}{2}\end{cases}
$$

The scalar products must be understood in the 'reduced' form. A cyclic rotation in (28) is also implicit.

Using the notation of (10), we can give an explicit decomposition of the \dot{E}_{8} roots under $\operatorname{SU}(3) \times \mathrm{E}_{6}$:

$$
\begin{array}{lllll}
(0, & \pm 1 & \pm e_{1} & \pm e_{2} & \left. \pm e_{3}\right) \\
(0, & \pm S_{0} & \pm \bar{S}_{2} & \pm S_{1} & \left. \pm \bar{S}_{1}\right) \\
(0, & \pm \bar{S}_{0} & \pm S_{3} & \pm \bar{S}_{3} & \left. \pm S_{2}\right) \\
\left(A_{1},\right. & \pm \frac{1}{2}\left(e_{3}-e_{1}\right) & \pm \frac{1}{2}\left(1-e_{2}\right) & \pm \frac{1}{2}\left(e_{1}+e_{3}\right) & \left. \pm \frac{1}{2}\left(1+e_{2}\right)\right) \\
\left(A_{2},\right. & \pm \frac{1}{2}\left(e_{1}-e_{2}\right) & \pm \frac{1}{2}\left(1+e_{3}\right) & \pm \frac{1}{2}\left(1-e_{3}\right) & \left. \pm \frac{1}{2}\left(e_{1}+e_{2}\right)\right) \tag{29b}\\
\left(A_{3},\right. & \pm \frac{1}{2}\left(e_{2}-e_{3}\right) & \pm \frac{1}{2}\left(e_{3}+e_{2}\right) & \pm \frac{1}{2}\left(1+e_{1}\right) & \left. \pm \frac{1}{2}\left(1-e_{1}\right)\right) \\
\left(A_{0},\right. & 0) . & & &
\end{array}
$$

Our notation needs clarification. A bracket ($a, b c d e$) represents four brackets of the form $(a, b),(a, c),(a, d),(a, e)$. In this unusual notation $(0, \pm 1)= \pm \sigma,\left(0, \pm S_{0}\right)= \pm \sigma S_{0}$, $\left(0, \pm \bar{S}_{0}\right)= \pm \sigma \bar{S}_{0}$ are the roots of $\mathrm{SU}(3) . \mathrm{E}_{6}$ roots are given in the same column as $\mathrm{SU}(3)$ roots in (29) which can be also written as
$A_{0} \quad A_{1} \pm \frac{1}{2} \sigma\left(e_{3}-e_{1}\right) \quad A_{2} \pm \frac{1}{2} \sigma\left(e_{1}-e_{2}\right) \quad A_{3} \pm \frac{1}{2} \sigma\left(e_{2}-e_{3}\right)$.
Since S_{0} is an element of A_{0} it is left unchanged by the action of S_{0}. The other sets of elements are rotated into each other in cyclic order since A_{1}, A_{2} and A_{3} are rotated into each other by S_{0} in the form of (26). It is quite obvious that the remaining elements belong to the coset space $\mathrm{E}_{8} / \mathrm{SU}(3) \times \mathrm{E}_{6}$ and are separately rotated into each other by S_{0}.

The roots of E_{8} in (29) are organised such that each column is invariant under right multiplication by S_{0}, in contrast to the transformation defined by (26). While each column in (29a) represents the roots of $\mathrm{SU}(3)$, the column below displays the roots of E_{6} provided ($A_{0}, 0$) is also added. Therefore, the root system given in (29) shows that $\mathrm{SU}(3) \times \mathrm{E}_{6}$ can be embedded in E_{8} in four different ways with an obvious S_{0} invariance by right multiplication. However, an action of S_{0} in the sense of (26)
will allow only one decomposition. Similar decompositions of E_{8} roots under $\mathrm{SU}(3) \times$ E_{6} can be made, replacing S_{0} by any icosian which satisfies $q^{3}= \pm 1$.

String phenomenologists sometimes prefer an $\mathrm{SU}(3)^{3}$ orbifold with Z_{3} symmetry [3]. The simple roots of E_{8} can be arranged so that a Z_{3} symmetry for each $\operatorname{SU}(3)^{4} \subset$ $\mathrm{SU}(3) \times \mathrm{E}_{6} \subset \mathrm{E}_{8}$ can be realised. For this purpose let us choose a root $R=$ $\frac{1}{2}\left(-1+\tau e_{1}+\sigma e_{3}\right)$. Then it can be shown that each of the following sets of roots:

$$
\begin{array}{lr}
\left(\pm R, \pm R^{2}, \pm 1\right) & \left(\pm R e_{2}, \pm R^{2} e_{2}, \pm e_{2}\right) \\
\left(\pm \sigma R, \pm \sigma R^{2}, \pm \sigma\right) & \left(\pm \sigma R e_{2}, \pm \sigma R^{2} e_{2}, \pm \sigma e_{2}\right) \tag{31}
\end{array}
$$

represents one $\mathrm{SU}(3)$. Since $R^{3}=1$, each $\mathrm{SU}(3)$ has a Z_{3} symmetry. The Z_{3} symmetry discussed in this section can also be represented by the octonionic roots of E_{8}, which will be discussed in a separate publication [16].

5. Discussion and conclusion

Several aspects of the representation of the E_{8} lattice with icosians differ from the octonionic representation. The two descriptions of the E_{8} lattice can be contrasted as follows.
(i) The octonionic root system obeys the usual scalar product defined by (7) and forms a closed non-associative discrete algebra of order 240 , only 24 of which satisfy the group property of the binary tetrahedral group.
(ii) In the case of icosians, the order of the group structure is extended to the binary icosahdral group of order 120 but the whole set of 240 roots do not close under multiplication since a multiplication of the form $(\sigma q)(\sigma q)=\sigma^{2} q^{2}=q+\sigma q$ produces lattice vectors of higher norms. Icosians represent the E_{8} lattice only with the 'reduced' scalar product.
(iii) Octonionic roots yield natural Abelian symmetries Z_{6}, Z_{4}, Z_{3} and Z_{2} of the E_{8} lattice with an interesting manifestation of the triality of the extended CoxeterDynkin diagram of E_{6} [14].
(iv) With icosians, while preserving the three-fold symmetry of the extended Coxeter-Dynkin diagram of E_{6}, one can naturally extend the Abelian symmetries to $Z_{10}, Z_{6}, Z_{5}, Z_{4}, Z_{3}$ and Z_{2} of the root system of E_{8}. To be more specific, the maximal subgroup $\mathrm{SU}(5) \times \operatorname{SU}(5)^{\prime}$ can be embedded in E_{8} with a Z_{5} symmetry invariance, which is not possible in the octonionic representation of the E_{8} lattice.

Another amusing observation is the possibility of describing the $\mathrm{E}_{8} \times \mathrm{E}_{8}^{\prime}$ root system by a simple extension of the root system given by (10). If we multiply the icosianic roots in (10) by the octonionic imaginary unit e_{7} we obtain an independent root system of 240 elements described by the octonionic units $e_{4}, e_{5}, e_{6}, e_{7}$ and their σ multiples. Then one can show that the 120 elements of the binary icosahedral group in E_{8} and the corresponding 120 octonionic elements in E_{8}^{\prime} form a closed algebra, presumably a subset of a larger algebra. The products of any two elements of the E_{8}^{\prime} lattice will yield a lattice element of E_{8}. Another possible description of the $\mathrm{E}_{8} \times \mathrm{E}_{8}^{\prime}$ lattice can be made by multiplying the octonionic roots of E_{8} by σ. This second construction is totally different from the previous one in most respects.

The first construction of $\mathrm{E}_{8} \times \mathrm{E}_{8}^{\prime}$ could be attractive in view of the fact that an unbroken E_{8}^{\prime} in the heterotic string could be attributed to its pure octonionic structure.

Acknowledgments

I am grateful to Professor Louis Michel for stimulating discussions and bringing to my attention the book Sphere-Packing, Lattices and Groups by J H Conway and N J A Sloane [11]. I would like to thank Professor Marcel Berger for the hospitality at IHES.

This work is partially supported by the Scientific and Technical Research Council of Turkey.

References

[1] Lerche W, Schellekens A N and Warner N P 1989 Phys. Rep. 1771
[2] Gross D, Harvey J A, Martinec E and Rohm R 1985 Nucl. Phys. B 256 253; 1986 Nucl. Phys. B 26775
[3] Dixon L, Harvey J A, Vafa C and Witten E 1985 Nucl. Phys. B 261 678; 1986 Nucl. Phys. B 274285 Hamidi S and Vafa C 1987 Nucl. Phys. B 279465
Dixon L, Friedan D, Martinec E and Shenker S 1987 Nucl. Phys. B 28213
Narain K, Sarmadi M and Vafa C 1987 Nucl. Phys. B 288551
Ibanez L E, Nilles H P and Quevedo F 1987 Phys. Lett. 187B 25
Ibanez L E, Kim J E, Nilles H P and Quevedo F 1987 Phys. Lett. 191B 282
Gepner D 1988 Nucl. Phys. B 296757
Casas J A and Munoz C 1988 Phys. Lett. 214B 63
[4] Koca M and Ozdes N 1989 J. Phys. A: Math. Gen. 221469
[5] Coxeter H S M 1946 Duke Math. J. 13561
Dickson L E 1919 Ann. Math. 220155
Gursey F 1987 Mod. Phys. Lett. A 2967; 1989 Mod. Phys. Lett. A 31155
Koca M 1988 Integral octonions and E8 Preprint ICTP IC/86/224
[6] Coxeter H M S 1974 Regular Complex Polytopes (Cambridge: Cambridge University Press)
[7] Leech J 1967 Can. J. Math. 19251
[8] Koca M 1989 J. Phys. A: Math. Gen. 221947
[9] Hurwitz A 1933 Math. Werke 2303
[10] Wilson R A 1986 Geometriae Dedicata 20157
[11] Conway J H and Sloane N J A 1988 Sphere-Packing, Lattices and Groups (Berlin: Springer) ch 8
[12] Tits J 1980 J. Algebra 6356
[13] Goddard P, Nahm W, Olive D I, Ruegg H and Schwimmer A 1986 Commun. Math. Phys. 107 179; 1987 Commun. Math. Phys. 112385
[14] Gursey F and Koca M 1989 Octonionic triality of extended Coxeter-Dynkin diagram of E_{6}, in preparation
[15] Green M B, Schwarz J H and West P C 1985 Nucl. Phys. B 254327
[16] Koca M 1989 Quaternionic and octonionic orbifolds Phys. Lett. B in press

[^0]: † Present address: Theory Division, CERN, 1211 Geneva 23, Switzerland. Permanent address: Department of Physics, Cukurova University, 01330 Adana, Turkey.

