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E, lattice with icosians and Z, symmetry 
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Institut des Hautes Etudes Scientifiques, 35 Route de Chartres, 91440 Bures-sur-Yvette, 
France 

Received 3 February 1989 

Abstract. A simple method for the construction of the E, root system with icosians is 
suggested. It is confronted with the root system of E, obtained by integral octonions. 
Embeddings of the maximal subgroups SU(5) x SU(5) and SU(3) x E, in E, with respective 
five-fold and three-fold symmetries are discussed. 

1. Introduction 

Most general string theories can be obtained using self-dual lattices where the compac- 
tified degrees of freedom are described by simple conformal field theories [ 11. Among 
these theories the heterotic string [2] constructed in ten-dimensional spacetime displays 
most attractive features with a possibility of obtaining the standard model with orbifold 
compactification [3]. With regard to these facts the root system of E8 plays an essential 
role. In a recent paper [4] we have constructed the root system of E8 with integral 
octonions [5] and investigated its algebraic structure. The method which we have 
employed is based on the idea that the octonions are obtained by pairing two quatern- 
ions. For this purpose we first obtained the root system of F4 and then combined two 
such systems to construct the octonionic description of the E8 lattice, where one set 
of F4 roots is multiplied by an imaginary unit e, and added to the other. 

In this paper we construct the E8 lattice with icosians. Icosian is a generic name 
for the 120 quaternionic elements ( q )  of the binary icosahedral group [6] which we 
will discuss in 0 2. We follow the same method as [4], i.e. we combine two sets of 
quaternionic roots of F4, multiplying one set by a = $( 1 -&) and add it to the other 
set, which leads to 240 non-zero roots q, aq of E8. We compare the E8 roots of icosians 
with those of octonions and find the relations between them. In 5 3  we decompose 
the roots of E8 with respect to one of its maximal subgroups SU(5) x SU(5)’ where a 
five-fold symmetry of icosians plays a dominant role. In § 4 we concentrate on the 
three-fold symmetry of icosians by branching E8 with respect to its maximal subgroup 
SU(3) x E6. Section 5 consists of the discussions and suggestions as to how this method 
can be generalised for the construction of the E8 x E; lattice with the inclusion of 
octonions and the Leech lattice [7]. A preliminary version of this work has been 
published [8]. 

f Present address: Theory Division, CERN, 121 1 Geneva 23, Switzerland. Permanent address: Department 
of Physics, Cukurova University, 01330 Adana, Turkey. 
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2. Icosians as roots of E8 

A discrete subgroup of SO(3) of order 60 is called the icosahedral group, which is the 
symmetry group of the icosahedron. It is isomorphic to the group of even permutations 
AS of five letters. Its double cover 2AS of 120 elements, called the binary icosahedral 
group, can be represented by quaternions or equivalently 2 x 2 unitary matrices of 
determinant one. The 120 elements of the binary icosahedral group can be generated 
by the elements [ 6 ]  

A = $ ( 7  - vel + e3) B = t ( l - u e 2 + 7 e 3 )  (1) 

A S =  B 3 =  C 2 = A B C  = -1  (2) 

7 = ;( 1 + 8) 
. r + a = l  r 2 = r + 1  a 2 = u + 1  7 a = - 1  

satisfying the relations 

with C = e 3 .  Here 7 and U are defined by 

u = +( 1 - J3) 
(3 )  

and e , ,  e, and e3 are the quaternionic imaginary units satisfying 

= + &ijkek gI = -e, i, j ,  k = 1,2 ,3  (4) 
where 6, and are the usual Kronecker and Levi-Civita symbols respectively. In 
mathematical literature a short notation ( p ,  q, I )  is used to denote the groups generated 
by 

( 5 )  AP = Bq = C‘ = ABC = - 1 .  

Groups generated by quaternions fall into four classes called the quaternion group 
(2 ,2,2)  of order 8, the binary tetrahedral group (3 ,3,2)  of order 24, the binary octahedral 
group (4 ,3 ,2)  of order 48 and finally the binary icosahedral group (5 ,3,2)  of order 
120. In [4] we have shown the relations of (3 ,3 ,2)  and (4 ,3,2)  with the quaternionic 
root systems of SO(8) and F4 respectively. An explicit form for the elements of (5 ,3,2)  
can be calculated using ( 1 )  and is written as follows: 

* I  *e, *e2 *e3 $(*1*el*e2*e3)  (6a)  

+(+7* e, rt (+e2) ;(*I * w ,  * re3) $(*u* 78, * e3) ;(*ue, * ea* 7e3) (6b) 

f (*7*e2*ae3)  f (*l*ae,*7e2)  i (*a*e ,*te3)  t(*.rel*ae2*e3) (6c) 

f ( * ~ *  ae, i e3) $(*I * (+e2 * Te3) $(*a * re, * e,) $(*e, * re2* re3).  ( 6 4  
The 24 integral quaternions in (6a) (Hurwitz integers) [9] are the elements of (3,3,2),  
a subgroup of (5,3,2).  (4,3,2) is not a subgroup of (5,3,2).  Notice that (6c) and 
(6d) follow from (6b) by a cyclic permutation of e , ,  e, and e3.  If we denote by q any 
element of (5,3,  2) then there are 30 elements satisfying q2 = -1,  40 elements with 
q 3 = f l  (half with q3= + 1 )  and 48 elements with q 5 = * l  (half with q s = + l ) .  As we 
shall discuss in 9 9  3 and 4, these features of icosians are appropriate for the decomposi- 
tions of E8 with respect to its maximal subgroups SU(3) x E6 and SU(5) x SU(5)’. 

Wilson [lo], as well as Conway and Sloane [ 1 1 1  have proposed that the E8 lattice 
can be described by 120 icosians q and their multiples with U, aq. To ensure the 
‘correct angles’ between the E8 roots, they suggested a ‘reduced’ scalar product. Let 
p and q be two quaternions. The usual scalar product is defined by 

(P, d = t ( P q + c r p ) .  (7 )  
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With this definition, the scalar products of icosians ( 6 a ) - ( 6 d )  will take the values 
a + ba, where a and b are 0, *$, * l .  The 'reduced' scalar product is defined by the 
mapping a + b a  + a. This new definition of the scalar product also leads to a construc- 
tion of the Leech lattice in terms of icosians [ 1 2 ] .  Therefore, multiplying the elements 
in ( 6 a ) - ( 6 d )  by a will help us to write the complete root system of E8 explicitly. 
However, in this section, without referring to the defining relation of (2) we give an 
alternative construction of the roots of E8 with icosians. We follow a method similar 
to that suggested in [ 4 ] .  We notice that the 'reduced' scalar product allows us to treat 
a ,  r e , ,  u e 2 ,  ae3 as new orthogonal units, independent of the quaternionic units 1, e , ,  
e, and e3.  Thus, by this trick, we enlarge the four-dimensional Euclidean space of 
quaternions to eight-dimensional Euclidean space, a necessary step towards the con- 
struction of the E8 lattice. This procedure immediately suggests that there must exist 
a natural correspondence between a ,  ae , ,  (+e2, (+e3 and the octonionic units e,, e 5 ,  e6 
and e7.  This point will be clarified in what follows. 

We briefly recall the octonionic construction of E8 in [ 4 ] .  The root system of the 
exceptional group F, can be written in terms of quaternions as follows 

A0 A,  A2 A3 

24:  * l , * e , , * e 2 , * e 3  8 " : ; ( * l * e l )  8 c : $ ( * l * e 2 )  8 , : $ ( * l * e 3 )  (8) 
$(* I  * e, * ez* e3)  $(+e2* e3) &*e,* e , )  $ ( *e ,  * e2) .  

Here, provided they are multiplied by a, A, represents the long roots of F4 (the root 
system of SO(8)) and A , ,  A2 and A3 constitute the short roots of F,. By pairing two 
sets of f8) in a delicate manner we obtain the octonionic representation of E8 roots: 

[o, A01 = e7AO [ A , ,  Al l  = A, + e7Al 
( 9 )  

[ Ao , 01 = A0 

[ A , ,  A J = A 2 + e 7 A 3  [A3 9 = A3 + e7A2 

where we introduce the octonionic units e: = -1 ,  F7 = - e 7 ,  e, = e7e1,  e5 = e7e2 and 
e6 = e7e3. In fact, this is an explicit realisation of the E8 lattice with octonions by 
pairing two F4 lattices suggested by Goddard et al [ 1 3 ]  where E8 sits at one corner of 
a magic square. A little effort shows that Es can also be constructed by pairing two 
F4 roots similarly to (9) but with slightly different partners and replacing e7 by a .  
Indeed, one can easily check that the following pairings: 

( 1 0 )  
(A,, 0 )  = Ao (0, A01 = CA0 ( A ,  5 A21 = A1 + aA2 

( ' 4 2 9  A31 = A2+ CA3 (A3,  A l ) = A 3 + a A l  

not only reproduce the 120 elements in ( 6 a ) - ( 6 d ) ,  denoted by q, but also yield the 
additional roots aq of Ex. The differences between two pairings can be contrasted by 
comparing (9) and (10) .  This comparison suggests that a correspondence between the 
octonionic roots and the icosians can be obtained in the following form 

e7Aot ,  uAo e 7 - a  

e7A1 aA2 e7e1 = e,- (+e2 

e 7 A 2 - a A l  + e7e2 = e5 - ae,  

e7A3 t, aA3 e 7 e 3 = e 6 - a e 3 .  

With the obvious mapping 1 - 1 ,  e , t , e , ,  e2-e2,  e3-e3 ,  one can easily transform 
one system of roots of Es into another. This transformation can also be used for the 
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octonionic construction of the Leech lattice, which has been already described by 
icosians [lo-121. 

Before we end this section, let us remark on the following facts. There exists an 
alternative representation of the E, lattice with icosians. Instead of starting with the 
pair ( A , ,  A,) in ( lo) ,  had we started with ( A , ,  A3) we would have obtained the 
following set of icosians: 

(Ao, 0) = A0 (0, A,) = UAO (A,  , ‘ 4 3 )  = A, + TA3 
(12) 

(A3 9 A21 = A3 + CA2 ( A2,  A ) = A2 + UA , . 
The 120-element subset in (12), which constitutes the binary icosahedral group, is 
completely independent of (6a ) - (6d )  and can be generated by A = i( T + ue2 + e3) and 
B=i (1  -ue,+7e3) .  Equation (12) is obtained from (10) by a redefinition of the 
quaternionic units e, + - e2, e2 + e , ,  e3 + e3 corresponding to a rotation of ~ / 2  around 
the e3 axis in the clockwise direction, which can be obtained by the action of an 
element of the octahedral group. Since the octohedral or binary octohedral group is 
not a subgroup of (5 ,3 ,2)  the new set of icosians are expected to be different from 
the former. The elements of the binary icosahedral group used in most of the mathemati- 
cal literature are those which can be obtained from (12). If one compares (12) and 
(9), the correspondence in this case between octonions and icosians can be obtained 
from the mapping 

U t) e7 ue, - e6 = e7e3 (+e2- e5 = e7e2 (+e3 - e4 = e7e1.  (13 )  

In the appendix to [4] we have given seven different constructions of the E, lattice 
with octonions similar to (9). Indeed, with the quaternionic units e , ,  e2 and e3 one 
can also construct the following two independent octonionic root systems of E,: 

[A,, 01 = A0 [O,  A01 = e 4 0  [A2 9 A21 = A2+ e7A2 
(14) 

LA3,  A11=A3+e7A1 [Ai , A31 = Ai + e7A3 

and 

[A,, 01 = A0 [o, = [A,,  A31 = A3 i- e7A3 
(15) 

L A ,  > A 2 1  = + e7A2 [A2, AI1 = A,+ e7AI. 
Relations among these octonionic constructions and those in (10) and (12) can be 
found in a similar manner which we have illustrated. Although we shall say more in 
concluding remarks as regards the algebraic aspects of the E8 roots with octonions 
contrasted with icosians, some of their properties should be mentioned here since we 
will use them in later sections. Let P represent an octonionic root of Ex.  They satisfy 
either conditions q3 = il, q2  = k l .  This feature of the octonionic roots can be used 
for the constructions of orbifolds with Z6, Z4, Z3 and Z2 symmetries embeddable in 
E, [ 141. In the case of icosianic roots we also have the roots satisfying q5  = *l  in 
addition to the former ones, so that it allows constructions of orbifolds with Zlo and 
Z5 symmetries. 

3. Embedding of SU(S)xSU(5)’ in E8 with Z5 symmetry 

Hereafter we will deal with the icosian description of the E8 lattice given by (10). Any 
element q in ( 6 b ) - ( 6 d )  which has the scalar part -37 or -4u has the property q 5  = 1. 
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Therefore 24 elements with this property can be classified into six groups. This 
classification can be done at will depending on the choices of six elements; to begin 
with let us choose a root R I  = ; ( - T +  e ,  +ae,) .  A simple calculation shows that its 
powers are given by 

R I  = ;( -7  + e ,  + ae2)  R: =+(-a - Te, + e,) 

(16) R3 , - - R 2  , -*(-a+ -1 Te, - e z )  R 4 - E  , -  , - , ( - ~ - e , - a e , )  -1 

R : = l  R,+R:+R:+R:+R:=o. 

One can immediately check that with the use of the 'reduced' scalar product these 
roots can be used for the description of an extended Coxeter-Dynkin diagram of SU(5) 
(figure 1 ) .  The 20 non-zero roots of SU(5) are then given by 

It is clear that this set of SU(5) roots is left invariant under a repeated left or right 
multiplication of R I ,  leading to a Z5 symmetry. An orthogonal set of roots to the roots 
in (17 )  can be generated by repeated application of R I  on the roots *e3 and *'+e3. 
Thus we obtain the roots of another SU(5)', orthogonal to SU(5), given by 

Hence (17 )  and ( 1 8 )  display the roots of the maximal subgroup SU(5) x SU(5)' of E8 
with an obvious Z5 symmetry. The remaining roots belong to the coset space E,/SU(5) x 
SU(5)', which transform as @,E*) + (5*, lo) and ( @ , 5 )  + (U*, 5"). The 200 roots of 
the coset space can be written in a compact form by defining 

A , -1 - 2( -1  - e ,  - e,+ e3)  

A4 = +(a- Te2+ e3)  = -A, 

B1 = +( 7 -  e,+ ae3) 

~ , = + ( 1 - ~ e , + a e ~ ) = - B ,  

It can be shown that the roots of the representation (?,U*) are given by the elements 

A , -1 - *(-U - Te,+ e3)  A3 = +(-.re, + ae ,  + e3)  
( 1 9 a )  

A ,  = f ( l  - e ,  - e z + e 3 )  = -A, 

B2 = ic-1- ~ e ,  + (+e3) B3 = $ ( e ,  - Te2 + ae3)  
- (196)  B -I - *( - T - e, + ae3)  = -Bl . 

RI;A,, aR I; B, n, m = 1,2 ,  3 ,4 ,  5. (20 )  

RI R: R: f l  
Figure 1. Extended Coxeter-Dynkin diagram of SU(5) with five-fold symmetry of icosian 
R ,  = $( -7  + e ,  + ue2) .  
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Negatives of these roots constitute the conjugate representation ($*, 0). Similarly the 
roots belonging to (B,5) can be written as 

R y B,, -uR; A ,  n, m = 1 ,  2 ,3 ,4 ,  5 (21) 

the negatives of which represent the roots in (@*,j*). It is obvious from (20) and 
(21) that the roots belonging to the representations (5, B*), (lo, 5)  and their conjugates 
preserve Z, symmetry separately. 

It is perhaps more convenient to express the roots of the coset space as products 
of R ;  with the elements of the binary tetrahedral group which can be defined by 

s -1 - 2 ( 1  + el - e 2 - e 3 )  

s3 = +( 1 - e,  - e, + e3)  

So = + ( I  + e,  + e2+  e3)  

S2 = + ( I  - e ,  + e,-  e3)  

with their conjugates and negatives. Then all the roots of E8 can be decomposed as 
follows: 

(20 , l ) :  * R ; ,  * u R ;  ( l ,20) :  * R y e , ,  *uR;e3  (23a) 

(5,10*)+(5*,l0)+(0,5)+(10*,5*): * R ; ( S , ,  3 6 ,  e , ,  e2), *uRC(S,, s,, e , ,  e2) 

n = 1,2,3,4,5 a, /3 = 0, 1,2,3.  (23b) 

As we stated at the beginning of this section, R ,  can be chosen six different ways: 

(24a) R , -1 - ,( -T + e ,  + ue2)  R -1 - ,( --7+ e,+ ue3) R3 = +( - T +  ue,  + e3)  

R 4 = + ( - 7 + e ,  - u e 2 )  R s - 2 ( - ~ + e 2 - u e 3 )  -1 R 6 -1 - 2 (  -T - ue ,  + e3) .  (246) 

These choices are made so that the triples ( R I ,  R , ,  R 3 )  and ( R 4 ,  R 5 ,  R6)  have cyclic 
symmetries in e , ,  e, and e3 .  It is clear from these discussions that SU(5) x SU(5)' can 
be embedded in E8 in six different ways; in each case a Z, symmetry is manifest. These 
six possible decompositions of E8 with respect to SU(5) x SU(5)' can be displayed as 
follows: 

(2091) (1,201 

* R : ,  * u R :  * R : e 3 ,  *uR:e3 ( * X ,  + u R : ) ( S , ,  36, e ,  , e*) (25a) 

* R r ,  * u R :  * R : e , ,  *uR:e,  ( * R : ,  *uR: ) (Sa ,  $3, e3, e , )  (25c) 

(5, 10") + (5*, E) + (10,5) + (B*, 5 * )  

* R : ,  * u R :  * R : e , ,  *uR:e ,  ( * R : ,  *uR: ) (S , ,  s p ,  e23 e31 (25b) 

wheren=l,2,3,4,5,~=1,4,b=2,5,~=3,6anda,p=0,1,3 

So far we have discussed the action of an element of the binary icosahedral group 
on its elements by left or right multiplication. We can also consider a transformation 
of an element where a left and right multiplication are combined. Let P and Q be 
elements of (5,3,2).  Then a transformation of the form 

Q'= ( * P ) Q ( * P )  (26) 

represents the action of an element of the icosahedral group on the elements of (5,3,2).  
It is also possible to generate a Z5 symmetry in this form. For an illustration of this 
point let us choose P =  R I  = 4 ( - ~ + e , + u e , ) .  With this choice of P each SU(5) root 
remains invariant without being affected at all by the group operation. However, the 
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Figure2. Extended Coxeter-Dynkin diagram of E8 leading to an SU(5) x SU(5)'embedding 
with Z, symmetry. 

same action (26) on the roots of SU(5)' manifests itself as a Zs symmetry. An extended 
Coxeter-Dynkin diagram of E8,  where the Z5 symmetries so far discussed are apparent, 
is given in figure 2. An SU(5) orbifold with Z5 symmetry can be used for the construction 
of six-dimensional string theories [ 151. 

4. Embedding of SU(3) x E6 in E8 with Z3 symmetry 

In this section we decompose E8 roots under its maximal subgroup SU(3) x E,, which 
plays an important role in orbifold compactification of the heterotic string. We will 
choose the simple roots of E8 in such a way that the extended Coxeter-Dynkin diagram 
of E, obtained from that of E8 will have a three-fold symmetry of icosians. Such an 
extended Coxeter-Dynkin diagram of E6 is given in figure 3. Here Z3 symmetry is 
defined in the form of the transformation (26) where P is replaced by So= 
$ ( 1 + e , + e 2 + e , ) ,  which satisfies Si=-so, S;=-l ,  So+so= 1. It is easy to show that 
an action of So in the form of (26) rotates e , ,  e2, e3 and r e , ,  r e 2 ,  re3  in cyclic order. 
We choose the simple roots of E8 in such a way that the roots of E6 include the elements 
of the binary tetrahedral group. SU(3) roots orthogonal to those of E, in figure 3 are 
given by +a, +US,, *do. Each of these roots is invariant under the action of So in 
the form of (26). It is clear from figure 3 that So rotates B , ,  B2 and B3 in cyclic order 
just like it does e , ,  e2 and e 3 .  Thus, Z, symmetry of the extended Coxeter-Dynkin 
diagram of E, is obtained by repeated application of the element So of the E8 root 

Figure 3. Extended Coxeter-Dynkin diagram of E, with icosians E ,  = f ( - l -  T e ,  -ere,), 
B2 ={(-I - 7e2 - vel),  B3 = f ( - l -  7e3 - ue2),  Bo = s= (1 - e ,  - e2- e3) ,  e , ,  e, and e 3 .  
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system. The 72 non-zero roots of E6 can be grouped as 24 triples, each of which is 
rotated by the action of So.  We do not give the details here, but it can be easily shown 
that while 48 of the roots of E6 come from the elements of the binary icosahedral 
group, the remaining roots are the a multiples of the elements of the icosahedral group 
lying in the coset space Es/SU(3) x E,. 

An interesting algebraic property of the roots B , ,  B, and B3 is the relations [14]: 

[ Bi, Bj] = -Bo - EV~BI; BjBjB, = BiSo 

Bo = So i # j # k = 1,2,3.  

Similar relations can be obtained for the roots cyclically rotated to each other. Let 
Q , ,  Q2 and Q3 be such roots of E6 belonging to (5,3,2). Then we can show that their 
triple products can be classified as 

for (Q1,So)=o 
Q 1 9 2 0 3 =  for (01, So) =+ [“Is‘ for (Q,,So)=-i. 

The scalar products must be understood in the ‘reduced’ form. A cyclic rotation in 
(28) is also implicit. 

Using the notation of ( lo) ,  we can give an explicit decomposition of the E, roots 
under sU(3)  X Eg: 

(0 ,  *l * e ,  * e2 *e3) 

(0, *so * s2 *SI *SI) (29a) 
(0 ,  *So * s3 * S3 * S J  

( A 2 ,  *t(  e ,  - e2)  it( 1 + e 3 )  it( 1 - e3)  * t (  e ,  + e 2 ) )  (29b) 

(Ao, 0 ) .  

( A , ,  *$( e3 - e , )  it( 1 - e*) * ; ( e ,  + e 3 )  if( 1 + e 2 ) )  

( A 3 ,  *i(e2-e3)  * ; ( e 3 + e 2 )  *;(l+e,) * f ( l -e l ) )  

Our notation needs clarification. A bracket (a ,  b c d e )  represents four brackets of the 
form (a ,  b ) ,  (a ,  c), (a,  d ) ,  (a ,  e ) .  In this unusual notation (0, *1) = *a, (0 ,  *So)  =ido, 
(0 ,  *So) = *aSo are the roots o f ~ ~ ( 3 ) .  roots are given in the same column as Su(3)  
roots in (29) which can be also written as 

A0 A ,  i ;a( e3 - e , )  A2 i ;a( e ,  - e2)  A3 * ;a( e2 - e 3 ) .  (30) 

Since So is an element of A. it is left unchanged by the action of So. The other sets 
of elements are rotated into each other in cyclic order since A , ,  A2 and A3 are rotated 
into each other by So in the form of (26). It is quite obvious that the remaining elements 
belong to the coset space E8/SU(3) x E6 and are separately rotated into each other 

The roots of Es in (29) are organised such that each column is invariant under 
right multiplication by So, in contrast to the transformation defined by (26). While 
each column in (29a) represents the roots of SU(3), the column below displays the 
roots of E6 provided ( A o , O )  is also added. Therefore, the root system given in (29) 
shows that SU(3) x E6 can be embedded in E8 in four different ways with an obvious 
So invariance by right multiplication. However, an action of So in the sense of (26) 

by so. 
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will allow only one decomposition. Similar decompositions of E8 roots under SU(3) X 
E6 can be made, replacing So by any icosian which satisfies q3 = +l. 

String phenomenologists sometimes prefer an SU(3)3 orbifold with Z3 symmetry 
[3]. The simple roots of E8 can be arranged so that a Z3 symmetry for each SU(3)4c  
S U ( 3 ) x E 6 c  E8 can be realised. For this purpose let us choose a root R = 
1(-1+ T e ,  + re3) .  Then it can be shown that each of the following sets of roots: 

(+R,  *R2 ,  *l) (+Re2,  +R2e2,  

(+c+R, +uR2,  +a)  (*tRe,, *uR2e2,  +re21 

represents one SU(3). Since R3 = 1, each SU(3) has a Z3 symmetry. The Z3 symmetry 
discussed in this section can also be represented by the octonionic roots of E8, which 
will be discussed in a separate publication [16]. 

5. Discussion and conclusion 

Several aspects of the representation of the E8 lattice with icosians differ from the 
octonionic representation. The two descriptions of the E8 lattice can be contrasted as 
follows. 

(i) The octonionic root system obeys the usual scalar product defined by (7) and 
forms a closed non-associative discrete algebra of order 240, only 24 of which satisfy 
the group property of the binary tetrahedral group. 

(ii) In the case of icosians, the order of the group structure is extended to the 
binary icosahdral group of order 120 but the whole set of 240 roots do not close under 
multiplication since a multiplication of the form (aq)( uq) = u2q2 = q + uq produces 
lattice vectors of higher norms. Icosians represent the E8 lattice only with the ‘reduced’ 
scalar product. 

(iii) Octonionic roots yield natural Abelian symmetries z6, Z4, Z3 and Z2 of the 
E8 lattice with an interesting manifestation of the triality of the extended Coxeter- 
Dynkin diagram of E, [14]. 

(iv) With icosians, while preserving the three-fold symmetry of the extended 
Coxeter-Dynkin diagram of E6, one can naturally extend the Abelian symmetries to 
Zlo,  z6, Z5, Z4, Z3 and Z2 of the root system of E8. To be more specific, the maximal 
subgroup SU(5) x SU(5)’ can be embedded in E8 with a Z5 symmetry invariance, which 
is not possible in the octonionic representation of the E8 lattice. 

Another amusing observation is the possibility of describing the E8 x E[, root system 
by a simple extension of the root system given by (10). If we multiply the icosianic 
roots in (10) by the octonionic imaginary unit e, we obtain an independent root system 
of 240 elements described by the octonionic units e4, e5 ,  e6, e7 and their (T multiples. 
Then one can show that the 120 elements of the binary icosahedral group in E8 and 
the corresponding 120 octonionic elements in EA form a closed algebra, presumably 
a subset of a larger algebra. The products of any two elements of the El, lattice will 
yield a lattice element of E8. Another possible description of the E8 x E[, lattice can 
be made by multiplying the octonionic roots of E8 by (T. This second construction is 
totally different from the previous one in most respects. 

The first construction of E8 x EA could be attractive in view of the fact that an 
unbroken EL in the heterotic string could be attributed to its pure octonionic structure. 
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